9  Sobolev functions and ellipsoids

In our preparation to discuss minimax theory, we have drawn, in the last section, a connection between nonparametric regression and the Normal means model. This is because it is simpler to present minimax results in terms of the Normal means model than in a general nonparametric regression setting.

We now introduce a class of functions called periodic Xobolev functions, which is perhaps the class of functions most amenable to minimax analysis via the Normal means model.

Definition 9.1 For \(\beta\) a positive integer and \(L > 0\), define the Sobolev class of functions \(\mathcal{W}(\beta,L)\) as \[ \mathcal{W}(\beta,L) = \Bigg\{m : [0,1] \to \mathbb{R}: \quad \begin{array}{l} m^{(\beta-1)} \text{ is absolutely continuous }\\ \text{ and }\int_0^1|m^{(\beta)}(x)|^2dx \leq L\end{array}\Bigg\}. \] Moreover, define the periodic Sobolev class \(\mathcal{W}_\text{per}(\beta,L)\) as \[ \mathcal{W}_\text{per}(\beta,L) = \Big\{m \in \mathcal{W}(\beta,L): \quad m^{(j)}(0) = m^{(j)}(1), \quad j = 1,\dots,\beta\Big\}. \]

We find we can construct all the functions in a periodic Sobolev class from the Fourier basis such that the coefficients \(\theta_1,\theta_2,\dots\) lie in an ellipsoid called a Sobolev ellipsoid.

Definition 9.2 (Sobolev ellipsoid) Define the Sobolev ellipsoid \(\Theta(\beta,c)\) as \[ \Theta_{\text{Sob}}(\beta,L) = \Big\{(\theta_1,\theta_2,\dots) \in \mathbb{R}: \quad \sum_{j=1}^\infty \theta^2_j < \infty \text{ and } \sum_{j=1}^\infty a_j^2 \theta_j^2 \leq L^2/\pi^{2\beta}\Big\}, \] where \[ a_j = \left\{\begin{array}{ll} j^\beta,& j \text{ even}\\ (j-1)^\beta,& j \text{ odd} \end{array}\right. \] for \(j = 1,2,\dots\)

The next result is adapted from Proposition 1.14 on page 50 of Tsybakov (2008).

Theorem 9.1 (Basis for periodic Sobolev functions) We have \[ \mathcal{W}_{\text{per}}(\beta,L) = \Big\{ m : \quad m(x) = \sum_{j=1}^\infty \theta_j \varphi_j(x),\quad (\theta_1,\theta_2,\dots) \in \Theta_{\text{Sob}}(\beta,L)\Big\}, \] where \(\varphi_1,\varphi_2,\dots\) is the Fourier basis.

So, to understand how well we can estimate functions belonging to a periodic Sobolev class, we can study how well we can estimate \(\theta_1,\theta_2,\dots\) in the Normal means model when the unknown parameters lie in a Sobolev ellipsoid.

Figure 9.1 shows some functions from periodic Sobolev classes \(\mathcal{W}_\text{per}(\beta,L)\) for a few combinations of \(\beta\) and \(L\) values. The functions are randomly selected in these steps:

  1. Draw \(\theta_1,\dots \theta_N \overset{\text{ind}}{\sim}\mathcal{N}(0,1)\) with \(N = 50\).

  2. Minimize \(\sum_{i=1}^N(\theta_j - w_j)^2\) subject to \(\sum_{j = 1}^N a_j^2w_j^2 = L^2/\pi^{2\beta}\), where the \(a_j\) are those which define the Sobolev ellipsoid \(\Theta_{\text{Sob}}(\beta,L)\).

  3. Set \(m(x) = \sum_{j=1}^N\hat w_j \varphi_j(x)\), where \(\hat w_1,\dots,\hat w_N\) are from Step 2 and \(\varphi_1,\varphi_2,\dots\) is the Fourier basis.

Code
# helper function
getlam <- function(x,a,th,q){sum(a^2*th^2/(1-x*a^2)^2) - q^2}

# generate a periodic Sobolev function on [0,1]
psob_gen <- function(beta,L,nx){

  N <- 50
  x <- seq(0,1,length=nx)

  Phi <- matrix(0,length(x),N+1)

  Phi[,1] <- 1
  for(k in 1:(N/2)){
    Phi[,2*k] <- sqrt(2) * cos( 2*pi*k*x )
    Phi[,2*k+1] <- sqrt(2) * sin( 2*pi*k*x )
  }

  a <- numeric(N+1)
  for(j in 1:length(a)){

    a[j] <- ifelse(j %% 2 == 0,j^beta,(j-1)^beta)

  }

  th <- rnorm(N+1)
  uniroot_out <- uniroot(f = getlam, interval = c(0,100), a = a, th = th,q = L/pi^beta)
  lam <- uniroot_out$root

  th_sob <- th / (1 - lam * a^2)

  mx <- drop(Phi %*% th_sob)

  output <- list(x = x,
                 mx = mx,
                 th = th_sob)

  return(output)

}

beta <- c(1,2,3)
L <- c(2,4,8)*20
nx <- 300

psob_arr <- array(0,dim=c(length(beta),length(L),nx))


for(i in 1:3)
  for(j in 1:3){

    psob <- psob_gen(beta[i],L[j],nx)
    psob_arr[i,j,] <- psob$mx - psob$mx[1]

  }

par(mfrow=c(3,3),mar = c(2.1,2.1,1.1,1.1),oma = c(0,2.1,1.1,0))

for(i in 1:3){

  ylims <- range(psob_arr[i,,])

  for(j in 1:3){

    plot(psob_arr[i,j,]~psob$x,
         ylim = ylims,
         type = "l",
         ylab = "",
         xlab = "")

    if(j == 1){
      
      mtext(side = 2,line = 2.5, text = paste("beta = ",beta[i], sep = ""))
      
    }
    
    
    if(i == 1){
      
      mtext(side = 3,line = .5, text = paste("L = ",L[i], sep = ""))
      
    }
    
  }

}
Some randomly selected functions from periodic Sobolev classes.
Figure 9.1: Some randomly selected functions from periodic Sobolev classes \(\mathcal{W}_\text{per}(\beta,L)\). Each is centered such that \(m(0) = 0\).

Note that the functions become smoother for larger \(\beta\) and have less variation for smaller \(L\).

Next we will consider finding the minimax rate for estimating \(\theta_1,\theta_2,\dots\) in the Normal means model when the unknown parameters lie in a Sobolev ellipsoid.